DIFFERENTIATED SERVICES FOR THE INTERNET

Kalevi Kilkki

Differentiated Services for the Internet

Kalevi Kilkki

Published by: Macmillan Technical Pulishing 201 West 103red Street Indianapolis, IN 46290 USA

Copyright[®] 1999 by Macmillan Technical Publishing

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

International Standard Book Number: 1-57870-132-5

Library of Congress Catalog Card Number: 99-62122

2002 01 00 99 4 3 2 1

Interpretation of the printing code: The rightmost double-digit number is the year of the book's printing; the rightmost single-digit, the number of the book's printing. For example, the printing code 99-1 shows that the first printing of the book occurred in 1999.

Composed in Galliard and MCPdigital by Macmillan Computer Publishing

Printed in the United States of America

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Macmillan Technical Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

This book is designed to provide information about **Internet technologies**. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an as-is basis. The authors and Macmillan Technical Publishing shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

Feedback Information

At Macmillan Technical Publishing, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us at network-tech@mcp.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

PUBLISHER David Dwyer

EXECUTIVE EDITOR Linda Ratts Engelman

MANAGING EDITOR Patrick Kanouse

Acquisitions Editor Karen Wachs

DEVELOPMENT EDITOR Thomas Cirtin

PROJECT EDITOR *Theresa Wehrle*

COPY EDITOR Keith Cline

INDEXER Larry Sweazy

AQUISITIONS COORDINATOR Jennifer Garrett

MANUFACTURING COORDINATOR Brook Farling

BOOK DESIGNER Ann Jones

COVER DESIGNER Karen Ruggles

PRODUCTION TEAM SUPERVISOR Tricia Flodder

PRODUCTION Lisa England

PROOFREADER Elise Walter

Dedication

To: Eija, Olli, and Juho

Acknowledgments

First, I would like to thank my management at Nokia Research Center, in particular Raj Bansal and Antti Ylä-Jääski, for allowing me to work on the book with minimal attention to other tasks. I would like to express my appreciation to several colleagues at Nokia, among them Jussi Ruutu, Ove Strandberg, Ravikanth Rayadurgam, Jarno Rajahalme, Pasi Väänänen, and Matti Alkula. I have consumed their time with numerous intricate questions during the past months.

I also am indebted to the technical reviewers, Shivkumar Kalyanaraman and Jon Crowcroft, for their critical comments and beneficial suggestions. I am grateful to all the experts at Macmillan Technical Publishing for editorial assistance and for keeping the project on track although the schedule and the target appeared unattainable from time to time.

Finally, I heartily thank my family for their support and patience during this project.

About the Author

Kalevi Kilkki is a principal scientist at Nokia Research Center in Burlington, Massachusetts. He holds a master of science and doctor of technology in electrical engineering from Helsinki University of Technology, Finland. His comprehensive background includes research projects related to telephone networks at Helsinki University of Technology, to ATM networks at Telecom Finland (now Sonera), and to IP networks at Nokia Research Center. The ATM research work has been carried out in connection with several European research projects, such as COST242 and Eurescom P105, while the framework for IP research has been the Differentiated Services Working Group in IETF.

During the last three years, Kalevi's main effort has been to develop feasible traffic handling mechanisms required for service differentiation in the Internet. He has given numerous presentations at international conferences about diverse topics, from the application of genetic algorithms in connection admission control to pricing models for the Internet. Dr. Kilkki also has continuously delivered lectures about traffic theory and telecommunication systems at the Helsinki University of Technology and has instructed various master's theses. Finally, one of his main hobbies, philosophy, gives a specific flavor to the treatment of these intricate topics.

About the Technical Reviewers

These reviewers contributed their considerable practical, hands-on expertise to the entire development process for *Differentiated Services for the Internet*. As the book was being written, these folks reviewed all the material for technical content, organization, and flow. Their feedback was critical to ensuring that *Differentiated Services for the Internet* fits our reader's need for the highest quality technical information.

Shivkumar Kalyanaraman is an assistant professor for the department of electrical, computer, and systems engineering at Rensselaer Polytechnic Institute in Troy, New York. He received a B.Tech degree from the Indian Institute of Technology, Madras, India, in July 1993, followed by master of science and doctoral degrees in computer and information sciences at Ohio State University in 1994 and 1997, respectively. His research interests include traffic management, multicast, Internet pricing, multimedia networking, and performance analysis of distributed systems.

Shivkumar is a co-inventor in two patents (the ERICA and OSU schemes for ATM traffic management) and has co-authored several papers, IETF drafts, and ATM forum contributions. He is a member of IEEE-CS and ACM. His World Wide Web site is located at http://www.ecse.rpi.edu/ Homepages/shivkuma.

Jon Crowcroft is a professor of networked systems in the department of computer science, University College London, where he is responsible for a number of European and U.S. funded research projects in multimedia communications. He has been working in these areas for over 18 years. Jon graduated with a degree in physics from Trinity College, Cambridge University, in 1979. He gained his master of science in computing in 1981 and his doctoral degree in 1993.

Jon is a member of the ACM and the British Computer Society. He is a Fellow of the IEE and a senior member of the IEEE. He also is a member of the IAB and general chair for the ACM SIGCOMM. He is also on the editorial team for the ACM/IEEE Transactions on Networks. With Mark Handley, Jon is the co-author of *WWW: Beneath the Surf* (UCL Press). He also wrote *Open Distributed Systems* (UCL Press/Artech House).

Overview

Introduction

PART I BACKGROUND FOR DIFFERENTIATED SERVICES

- 1 The Target of Differentiated Services
- 2 Traffic Management Before Differentiated Services
- 3 Differentiated Services Working Group

PART II BUILDING A NETWORK DOMAIN BASED ON DIFFERENTIATED SERVICES

- 4 General Framework for Differentiated Services
- 5 Differentiation of Customer Service
- 6 Traffic Handling and Network Management
- 7 Per-Hop Behavior Groups

PART III BUILDING GLOBAL NETWORKS BASED ON DIFFERENTIATED SERVICES

- 8 Interworking Issues
- 9 Implementing Differentiated Services

References

Glossary

Index

Contents

PART I 1			1
1	The Target	of Differentiated Services	3
	1.1 The	Core of Differentiated Services	4
	1.1.1	Basic Entities of Differentiated Services	5
	1.1.2	The Relationships Among the Basic Entities	8
	1.2 The	Four Attributes of Differentiated Services	9
	1.2.1	Fairness	9
	1.2.2	Technical Issues: Versatility and Robustness	13
	1.2.3	Cost Efficiency	14
	Summary	7	15
2	Traffic Ma	nagement Before Differentiated Services	17
	2.1 Fun	ndamental Concepts, Models, and Technologies	17
		Customer Service	18
		Network with Services	19
		Network Operation and Management	20
		Traffic Handling	22
		Traffic Models for the Internet	23
	2.1.6	Technological Progress	25
	2.2 Tra	ditional Telecommunication Approaches	26
		Circuit-Switched Networks	26
	2.2.2	ATM Networks	30
	2.2.3	Evaluation of Connection-Oriented Approaches	36
	2.3 The	Best-Effort Approach	44
	2.3.1	Service Model	45
	2.3.2	Basic Best-Effort Service Based on TCP	47
		Improvements to the Basic TCP Behavior	48
	2.3.4	Evaluation of the Best-Effort Approach	50
	2.4 Inte	egrated Services Model	53
	2.4.1	Customer Service	55
	2.4.2	Implementation of Integrated Services	56
	2.4.3	Evaluation of the Integrated Services Model	59
	2.5 Tar	gets for Differentiated Services	60
	2.5.1	Customer Service	60
	2.5.2	Network Services	61
	2.5.3	Operation and Management	61
	2.5.4	Traffic Handling	62
	Summary	7	62

Differentiated Services for the Internet viii

3	Differentia	ated Services Working Group	65
	3.1 A S	hort History of Differentiated Services	65
	3.2 The	Position of the Differentiated Services Working Group	69
	3.3 Bas	ic Working Group Documents	69
	3.3.1	Introduction to Differentiated Services Model	70
	3.3.2	The Differentiated Services Field in IPv4 and	
		6 Headers	72
		Architecture for Differentiated Services	78
	3.3.4	A Framework for Differentiated Services	85
	Summary	V	89
PA	ART II		91
4	General Fi	ramework for Differentiated Services	<i>93</i>
	4.1 Bas	is for the Framework	94
	4.1.1	Basic Terminology	94
	4.1.2	Limitations of the Differentiated Services	
		king Group	95
	4.1.3	Target of the Framework	96
	4.2 Too	ls for Evaluating Service Models	<i>98</i>
	4.2.1	Availability of Quality	98
	4.2.2	Levels of Aggregation	101
		stomer Service	103
	4.3.1	Fulfilling Consumer Expectations	104
	4.3.2	Pricing Models and Predictability of Quality	104
		eration and Management	107
	4.4.1	Predictability of Load and Destination	108
	4.4.2	Service Models	109
	4.4.3	0 1 0	111
	4.4.4 4.4.5	Improving Statistical Multiplexing Conclusions About Statistical Multiplexing	117 124
		ffic Handling	124
	4.5 11a	Urgency	125
	4.5.2	Importance	123
	4.5.3	*	130
	4.5.4	Routing	132
	4.5.5	Support for Adaptive Applications	133
	4.6 Fra	mework for Per-Hop Behaviors	134
	4.6.1	Essence of Quality	134
	4.6.2	Relative Scales for Importance and Urgency	135

	4.6.3	Relative Scales for Bandwidth	137
	4.6.4	Predictability of Quality	138
	Summary	<i>y</i>	139
5	Differentia	ation of Customer Service	141
	5.1 Ser	vice Level Agreement	142
	5.1.1	Guaranteed Connections	144
	5.1.2	Leased-Line Service	145
	5.1.3	Resource Sharing	147
		Dynamic Importance	148
	5.1.5	Comparison Based on Availability of Quality	149
	5.2 Req	uesting Specific Service	151
	5.2.1	Dynamic Quality or Bandwidth for Guaranteed	
	Con	nections	151
	5.2.2	Permanent Bandwidth Reservation Versus	
		nanent Share	151
		Dynamic Share	152
	5.2.4	J 1	152
		cing as a Tool for Controlling Traffic	155
		Price of Bandwidth	157
	5.3.2	÷ 5	158
	5.3.3		159
	5.3.4	1 5	160
	5.3.5		161
	5.3.6	1 0 5	161
	5.3.7 5.3.8		163 163
	5.3.8	0	164
	Summary		165
C	U		105 167
6		ndling and Network Management	168
	<i>6.1 Tra</i> 6.1.1	ffic Handling in Boundary Nodes Classifiers	100
	6.1.2	Meters	170
		Packet Marking	176
		Traffic Shaping	178
	6.1.5		181
		ffic-Handling Functions in Interior Nodes	181
	6.2.1	Buffering	182
	6.2.2	Discarding	192
		Feedback Information	198

Differentiated Services for the Internet

	6.3 Fun	ections Related to a Network Domain	200
	6.3.1	Routing	200
	6.3.2	Resource Reservation	203
		Network Dimensioning	204
	6.3.4	Boundary Nodes Between Network Domains	207
	Summary	7	209
7	Per-Hop Be	ehavior Groups	211
	7.1 Syste	ematic Basis for PHB Evaluation	212
		ss Selector PHB Group	215
		Description	215
		Position in the Framework	217
		Required Technical Tools	222
	7.2.4	Evaluation of Attributes	223
	7.3 Exp	edited Forwarding PHB	224
	7.3.1	Description	224
	7.3.2	Position in the Framework	226
	7.3.3	Required Technical Tools	230
	7.3.4	Evaluation of Attributes	232
	7.4 Assu	ired Forwarding PHB Group	232
	7.4.1	Description	232
	7.4.2	Position of AF-PHB Group in the Framework	233
		Required Technical Tools	243
	7.4.4	Evaluation of Attributes	245
	7.5 Dyn	aamic RT/NRT PHB Group	245
	7.5.1	Description	245
	7.5.2	Position of DRT-PHB Group in the Framework	246
		Required Technical Tools	253
	7.5.4	Evaluation of Attributes	255
	Summary	7	256
PA	RT III		257
8	Interworki	ng Issues	259
	8.1 Inte	erworking Among Differentiated Services Models	259
		Class Selector PHB Group with Other PHB Groups	260
		Expedited Forwarding Versus Assured Forwarding	263
		DRT-PHB Group Compared with AF- and	
	EF-F	PHB Groups	268
	8.1.4	J 0 1	271
	8.2 I	Interworking with Other Internet Schemes	272

х

	8.2.1	Best-Effort Service	272
	8.2.2	Integrated Services and RSVP	274
	8.2.3	Multiprotocol Label Switching	278
	8.3 Inte	erworking with Non-IP Networks	280
	8.3.1	Asynchronous Transfer Mode	280
	8.3.2	IEEE 802.1p	283
	8.3.3	Wireless Networks	286
	8.4 Mu	lticast Services	290
	Summary	<i>y</i>	292
9	Implement	ing Differentiated Services	295
	9.1 Net	work and Traffic Models	296
	9.2 Imp	proving Fairness Using an AF-PHB Group	298
	9.2.1	Traffic Model	299
	9.2.2	Implementation	300
	9.2.3	Performance Evaluation	301
	9.2.4	Possible Improvements	304
	9.3 Viri	tual Private Networks by Using an EF-PHB	305
	9.3.1	Traffic Model	305
	9.3.2	Implementation	307
	9.3.3	Performance Evaluation	308
	9.3.4	Possible Improvements	310
	9.4 Serv	vice Differentiation with Three AF PHB Groups	311
	9.4.1	Implementation	311
	9.4.2	Traffic Model	313
	9.4.3	Network Dimensioning	314
	9.4.4	Possible Improvements	317
	9.5 Tota	al Service on the Basis of a DRT-PHB Group	317
		Implementation	318
		Traffic Model	319
	9.5.3	Performance Evaluation	320
	9.5.4	Possible Improvements	322
	Summ	ary	323
	Refere	ences	327
	Glossa	ry	333
	Index		345

xi

Figures

Figure 1.1	Main entities of the Internet and the relationships among them p. xxx
Figure 2.1	The main building blocks are boundary nodes (A), interior nodes (B), and customer equipment (C) p. xxx
Figure 2.2	Virtual circuits and virtual paths in an ATM network p. xxx
Figure 2.3	Part of a fictitious ATM service bill p. xxx
Figure 2.4	The difference in real service quality of three service classes p. xxx
Figure 2.5	Sawtooth pattern of a TCP connection p. xxx
Figure 3.1	Discussion activity on the integrated services mailing list p. xxx
Figure 3.2	Construction of Differentiated Services p. xxx
Figure 3.3	Per-hop Behavior (PHB) p. xxx
Figure 3.4	The main building blocks of Differentiated Services p. xxx
Figure 3.5	Per-Hop Behavior Group with two PHB classes p. xxx
Figure 3.6	The structure of the Differentiated Services field p. xxx
Figure 3.7	Basic elements of a Differentiated Services network p. xxx
Figure 3.8	Main entities of the Internet and the relationships between them p. xxx
Figure 3.9	Packet classifier and traffic conditioning according to the architecture document p. xxx
Figure 3.10	Three approaches to sharing link resources p. xxx
Figure 4.1	Availability of quality for a packet loss ratio p. xxx
Figure 4.2	Availability of quality with a theoretical curve and two practical examples p. xxx
Figure 4.3	Fairness aspects on different levels of aggregates p. xxx
Figure 4.4	Predictability of traffic and destination p. xxx
Figure 4.5	A network model p. xxx
Figure 4.6	Dimensioning rule based on mean (M) and variance (V) of a prediction distribution p. xxx
Figure 4.7	Traffic from node A and to three nodes: B, C, and D p. xxx
Figure 4.8	The effect of traffic shaping p. xxx
Figure 4.9	Availability of quality with and without reservations p. xxx
Figure 4.10	Availability of quality with delay criterion p. xxx

Figure 4.11 Selection of packets to be discarded p. xxx

Figure 4.12 VPN categories p. xxx

Figure 4.13 A VPN network with a possible conflict p. xxx

Figure 4.14 Relative scales of importance and urgency p. xxx

Figure 4.15 Changing of the order of two PHBs in relation to packet loss ratio p. xxx

Figure 4.16 A PHB system with importance and bandwidth scales p. xxx

Figure 5.1 Four basic approaches for SLA p. xxx

Figure 5.2 Service model for guaranteed connections p. xxx

Figure 5.3 Service model for leased line service p. xxx

Figure 5.4 Service model for resource sharing p. xxx

Figure 5.5 Service model for resource sharing with dynamic importance p. xxx

Figure 5.6 Quality function for guaranteed service and resource sharing service p. xxx

Figure 5.7 An approximate relation between charged unit and costs p. xxx

Figure 5.8 A tentative relationship between bandwidth and price p. xxx

Figure 5.9 A tentative relationship between delay variation and price p. xxx

Figure 5.10 A tentative relationship between availability and price p. xxx

Figure 5.11 Bandwidth as a function of availability for fixed price and quality p. xxx

Figure 5.12 Quality as a function of availability for fixed price and bandwidth p. xxx

Figure 5.13 Bandwidth as a function of quality for fixed price and availability p. xxx

 Figure 5.14
 A tentative relationship between traffic variability and available bandwidth p. xxx

Figure 6.1Differentiated Services from a customer's perspectivep. xxx

Figure 6.2 The main building blocks of traffic handling p. xxx

Figure 6.3 Desired measuring principle for guaranteed service and resource-sharing service p. xxx

Figure 6.4 Conforming and non-conforming flows measured by token bucket and by exponential moving average p. xxx

Figure 6.5 Two marking principles (M1 and M2) with two values for lost traffic (0 and -1000) p. xxx

Figure 6.6 Traffic shaping for an MPEG coded video stream p. xxx

Figure 6.7 Traffic shaping for traffic process with variation on all time scales p. xxx

Figure 6.8 Effect of shaping on the metering result p. xxx

xiv Differentiated Services for the Internet

Figure 6.9	Bit rates before $(R_{11} \text{ and } R_{21})$ and after $(R_{12} \text{ and } R_{22})$ packet
	discarding p. xxx

Figure 6.10 A target for quality differentiation of CBQ system p. xxx

Figure 6.11 Target "higher price more bandwidth" for a service model using CBQ p. xxx

Figure 6.12 The principle of RED p. xxx

Figure 6.13 Random Early Detection with two importance levels p. xxx

Figure 6.14 Primary and secondary routes p. xxx

Figure 6.15 Load balancing using secondary routes p. xxx

Figure 7.1 Criteria for higher probability of timely forwarding p. xxx

Figure 7.2 Fairness criteria for class selector PHBs p. xxx

Figure 7.3 Most relevant service category for class selector PHB group p. xxx

Figure 7.4 Predictability of load and destination for class selector PHB group p. xxx

Figure 7.5 Delay and importance relations of class selector PHBs p. xxx

Figure 7.6 An example of class selector PHB implementation p. xxx

Figure 7.7 Shaping and discarding in EF PHB p. xxx

Figure 7.8 Relevant fairness issues for expedited forwarding p. xxx

Figure 7.9 Primary and secondary service models for EF PHB p. xxx

Figure 7.10 Predictability of load and destination for expedited forwarding PHB p. xxx

Figure 7.11 Expedited forwarding vs. default PHB in delay-importance scale p. xxx

Figure 7.12 One possible implementation of expedited forwarding with default PHB p. xxx

Figure 7.13 Structure of AF-PHB group p. xxx

Figure 7.14 Relevant fairness issues for assured forwarding PHB group p. xxx

Figure 7.15 Possible service model for an AF-PHB class p. xxx

Figure 7.16 Possible service model for three AF-PHB classes p. xxx

Figure 7.17 Predictability of load and destination for AF-PHB group p. xxx

Figure 7.18 Two delay classes made by two AF PHBs p. xxx

Figure 7.19 Six importance levels made by two AF PHBs p. xxx

Figure 7.20 AF implementation based on four queues and three importance levels p. xxx

Figure 7.21 Structure of DRT-PHB group p. xxx

Figure 7.22 Relevant fairness issues for DRT-PHB group p. xxx

Figure 7.23 Primary and secondary service models for DRT-PHB group p. xxx

Figure 7.24	Predictability of load and destination for DRT-PHB group p. xxx
Figure 7.25	Quality model of DRT-PHB group p. xxx
Figure 7.26	An implementation of DRT-PHB group p. xxx
Figure 8.1	Applicability areas for PHB groups p. xxx
Figure 8.2	Predictability characteristics of CS-PHB group compared to other PHB groups p. xxx
Figure 8.3	CS PHB group compared to other PHB groups regarding importance and urgency scales p. xxx
Figure 8.4	Service model comparison of EF- PHB and AF-PHB group p. xxx
Figure 8.5	Comparison of EF-PHB and AF-PHB group regarding importance and urgency scales p. xxx
Figure 8.6	The location of an AF class and EF PHB in the scale of urgency and importance p. xxx
Figure 8.7	Possible location of overload situation with EF- and AF-PHB groups p. xxx
Figure 8.8	Service model of DRT-PHB group compared with EF-PHB and AF-PHB group p. xxx
Figure 8.9	DRT-PHB group compared with EF and AF regarding predictability of traffic and destination p. xxx
Figure 8.10	Three AF classes (each with three PHBs) and DRT-PHB group (2*6 PHBs) p. xxx
Figure 8.11	Three AF classes (each with three PHBs) and DRT-PHB group (2*6 PHBs) p. xxx
Figure 8.12	Five alternatives for interoperability between Differentiated Services and Integrated Services p. xxx
Figure 8.13	The primary service model for Integrated Services p. xxx
Figure 8.14	Integrated Services compared with EF-PHB and AF-PHB group regarding predictability p. xxx
Figure 8.15	Tentative urgency and importance relationships between rt-VBR, nrt-VBR, and UBR services p. xxx
Figure 8.16	Urgency and importance relationships of IEEE 802.1p p. xxx
Figure 8.17	IEEE 802.1p adjusted into the DRT-PHB structure p. xxx
Figure 8.18	GPRS quality attributes p. xxx
Figure 8.19	Predictability of load and destination for multicast streams p. xxx
Figure 9.1	Network structure for implementation examples p. xxx

xvi Differentiated Services for the Internet

Figure 9.2	Auxiliary VPs between nodes 3, 4, and 11 p. xxx
Figure 9.3	The units of four large organizations p. xxx
Figure 9.4	Average bit rates of 26 VPs on link 1-4 p. xxx
Figure 9.5	EF- PHB with best effort (BE) PHB and an intermediate
	PHB p. xxx
Figure 9.6	AF- PHB structure with three AF classes p. xxx
Figure 9.7	DRT- PHB structure with 14 PHBs p. xxx